Feature Stores: Core Concepts, Practices and Workshop (with Feast and Kubeflow)


Feb 26, 10:00AM PST(06:00PM GMT).
  • Free 224 Attendees
Description
Speaker
The event is co-hosted with MLOps community, Link

Feature stores have emerged as critical technologies in a modern ML stack. They aim to solve the full set of data management problems encountered when building and operationalizing data for ML applications.
In this webinar we will dive into the design and concepts of feature stores, where feature stores fit in the ML stack, and the problems they solve. We will then provide a hands on walk through in deploying an end-to-end ML system that leverages a Feast as its feature store, and Kubeflow as the ML platform.


About MLOps Community
The MLOps Community fills the swiftly growing need to share real-world Machine Learning Operations best practices from engineers in the field. While MLOps shares a lot of ground with DevOps, the differences are as big as the similarities. We needed a community laser-focused on solving the unique challenges we deal with every day building production AI/ML pipelines.
Join us every week for a live virtual meetup, Wednesdays at 5 PM UK, 9 AM PT, where top experts share what they’ve learned running pipelines for organizations bigs and small in a podcast interview format. We’re also firing up “coffee sessions” where we dive deep on the emerging stack of ML tools and platform.
Willem Pienaar (Tecton)

Willem is currently a tech lead at Tecton where he leads the development of Feast, an open source feature store for machine learning. Previously he led the ML platform team at Gojek, the Southeast Asian decacorn, which supports a wide variety of models and handles over 100 million orders every month. His main focus areas are building data and ML platforms, allowing organizations to scale machine learning and drive decision making. In a previous life, Willem founded and sold a networking startup.